
Complex Analysis II Chapter 5 Lecture Notes Spring 2024

§ 1 Power Series Expansions

1.1 Weierstrass’s Theorem

Theorem 1. (Weierstrass’s Theorem) Consider the sequence {fn}∞n=1, where fn is analytic
on the open connected set Ωn. Suppose in addition that

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωn ⊂ · · · and that
∞⋃
n=1

Ωn = Ω.

If {fn}∞n=1 converges to a limit function f in the open connected set Ω, uniformly on every
compact subset of Ω, then f is analytic in Ω.

Moreover, f ′
n converges uniformly to f ′ on every compact subset of Ω.

Proof Let E be a compact subset of Ω = ∪∞
n=1Ωn, and let

� N ∈ N be chosen such that E ⊂ Ωn for all n ≥ N.

� z0 ∈ E ⊂ Ω and R > 0 (depending on z0) be chosen such that DR(z0) ⊂ Ωn for all n ≥ N.

By Cauchy’s integral formula, for all n ∈ N such that n ≥ N, we have

fn(z) =
1

2πi

∫
∂DR(z0)

fn(ζ)

ζ − z
dζ , ∀ z ∈ DR(z0)

Since fn converges uniformly to f on DR(z0), we have

f(z) = lim
n→∞

1

2πi

∫
∂DR(z0)

fn(ζ)

ζ − z
dζ =

1

2πi

∫
∂DR(z0)

lim
n→∞

fn(ζ)

ζ − z
dζ =

1

2πi

∫
∂DR(z0)

f(ζ)

ζ − z
dζ

for all z ∈ DR(z0), which implies that f is analytic in the disk and from which we conclude that
f is analytic in Ω.

Furthermore,

f ′
n(z) =

1

2πi

∫
∂DR(z0)

fn(ζ)

(ζ − z)2
dζ , ∀ z ∈ DR(z0)

so

lim
n→∞

f ′
n(z) =

1

2πi

∫
∂DR(z0)

lim
n→∞

fn(ζ)

(ζ − z)2
dζ =

1

2πi

∫
∂DR(z0)

f(ζ)

(ζ − z)2
dζ = f ′(z)

for all z ∈ DR(z0). For each z ∈ DR/2(z0), since

|f ′
n(z)− f ′(z)| ≤ 1

2π

∫
∂DR(z0)

|fn(ζ)− f(ζ)|
|ζ − z|2

|dζ| ≤ 1

2π

∫
∂DR(z0)

|fn(ζ)− f(ζ)|
(R/2)2

|dζ|

for all n ∈ N such that n ≥ N, and the fact that E can be covered by a finite number of closed
disks in {DR/2(z0) | z0 ∈ E, R = R(z0)}, the convergence of f ′

n to f ′ is uniform on E.

Similarly, one can show that f (k)
n converges uniformly to f (k) on every compact subset of Ω for

all k ∈ N.
Theorem 2. (Hurwitz’s Theorem) If the functions fn are analytic and nowhere zero in an
open connected set Ω, and if fn converges to f uniformly on every compact subset of Ω, then f
is either identically zero, or never equal to zero in Ω.
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Proof : Suppose there exists z0 ∈ Ω such that f(z0) = 0 and that f is not identically zero. Since
f is analytic, ∃ δ > 0 such that ∀ z ∈ Dδ(z0) \ {z0} ⊂ Ω, f(z) ̸= 0. On ∂Dδ(z0), since

lim
n→∞

1

fn
=

1

f
and lim

n→∞
f ′
n = f ′

both uniformly, we may thus write

lim
n→∞

1

2πi

∫
∂Dδ(z0)

f ′
n(z)

fn(z)
dz =

1

2πi

∫
∂Dδ(z0)

f ′(z)

f(z)
dz

By the argument principle, the left-hand side is 0, and the equality cannot hold since f(z0) = 0.
There is a contradiction. This concludes our proof.

1.2 The Taylor Series

Corollary Let {fn}∞n=1 be a sequence of analytic functions on an open connected set Ω. If the
infinite series

∞∑
n=1

fn(z) = lim
N→∞

N∑
n=1

fn(z) = f(z)

converges uniformly to f on every compact subset of Ω, then f is analytic in Ω and the series
can be differentiated term by term.

Proof Let gn =
n∑

i=1

fi, and apply the Weierstrass’ Theorem for the sequence (gn)
∞
n=1.

Theorem 3. If f(z) is analytic in an open connected set Ω containing z0, then the representation

f(z) =
∞∑
k=0

f (k)(z0)

k !
(z − z0)

k

is valid in the largest open disk of center z0 contained in Ω.

Proof For each z0 ∈ Ω, we know from Section 4.3.1 that we can write the Taylor formula of f as

f(z) =
n∑

k=0

f (k)(z0)

k !
(z − z0)

k + fn+1(z) (z − z0)
n+1

where

fn+1(z) =
1

2πi

∫
∂D

f(ζ)

(ζ − z0)n+1 (ζ − z)
dζ

and D is any closed disk |z − z0| ≤ R contained in Ω.

Let M be the maximum of |f | on ∂D. Since

∣∣fn+1(z) (z − z0)
n+1
∣∣ ≤ M |z − z0|n+1

Rn (R− |z − z0|)
∀ |z − z0| < R

=⇒ lim
n→∞

∣∣fn+1(z) (z − z0)
n+1
∣∣ = 0 uniformly in every disk |z − z0| ≤ r < R,

This proves the existence of a Taylor series for f centered in z0 which is valid in the largest open
disk of center z0 contained in Ω.

Page 2



Complex Analysis II Chapter 5 Lecture Notes(Continued)

1.3 The Laurent Series

We say that
∞∑

k=−∞

µk = L if both
∞∑
k=0

µk and
∞∑
k=1

µ−k converge and if the sum of their sums is L.

Definition A Laurent expansion of a function f(z) about an isolated singularity α is a series of
the form

f(z) =
∞∑

k=−∞

ck(z − α)k.

Proposition f(z) =
∞∑

k=−∞

ckz
k is convergent in the domain

D = {z ∈ C | R1 < |z| and |z| < R2}

where

1

lim sup
k→∞

|ck|1/k
≥ R2 and lim sup

k→∞
|c−k|1/k ≤ R1.

If R1 < R2, D = A(R1, R2) = {z ∈ C | R1 < |z| < R2} is an annulus and f is analytic in D.

Proof Write f(z) = f1(z) + f2(z), where

f1(z) =
∞∑
k=0

ckz
k and f2(z) =

∞∑
k=1

c−k (1/z)
k .

Since

� f1(z) =
∞∑
k=0

ckz
k converges for |z| < 1

lim sup
k→∞

|ck|1/k
,

� f2(z) =
∞∑
k=1

c−k (1/z)
k converges for

1

|z|
<

1

lim sup
k→∞

|c−k|1/k
⇐⇒ |z| > lim sup

k→∞
|c−k|1/k,

the sum
∞∑

k=−∞

ckz
k converges for all z ∈ D.

Also, since f1 is a power series and f2(z) = g(1/z) where g is a power series, f1 and f2 are
both analytic in their respective domains of convergence. Hence f is analytic in the intersection
A(R1, R2) of their domains. □

Theorem If f(z) is analytic in the annulus A(R1, R2) = {z ∈ C | R1 < |z| < R2}, then f has a
Laurent expansion

f(z) =
∞∑

k=−∞

ckz
k converges for all z ∈ A(R1, R2),

where

ck =
1

2πi

∫
Cρ(0)

f(w)

wk+1
dw

for each k ∈ Z, and for any circle Cρ(0) of radius R1 < ρ < R2 with center at 0.
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Proof For each z ∈ A(R1, R2), consider the function g : A(R1, R2) → C defined by

g(w) =


f(w)− f(z)

w − z
if w ̸= z,

f ′(z) if w = z.

Since g is analytic in A(R1, R2) \ {z}, and continuous in A(R1, R2), so g satisfies the condition
lim
w→z

(w − z)g(w) = 0, and, by the Cauchy’s Theorem (Theorem 15), we have∫
γ

g(w) dw = 0 for every cycle γ ∼ 0 in A(R1, R2) \ {z}

and, by the Fundamental Theorem of Calculus, there exists an analytic function G(w), an an-
tiderivative of g, such that

G′(w) = g(w) for each w ∈ A(R1, R2)

=⇒
∫
C

g(w) dw =

∫
C

G′(w) dw = 0 for any closed curve C ⊂ A(R1, R2).

For any r, R such that R1 < r < |z| < R < R2, let CR(0) = {w = Reiθ | 0 ≤ θ ≤ 2π}
Cr(0) = {w = reiθ | 0 ≤ θ ≤ 2π} be the positively oriented circles, and I be the line segment
from z = R to z = r in A(R1, R2).

z

R1 R2
Rr

Note that CR(0) ∪ I ∪ (−Cr(0)) ∪ (−I) is a closed curve in A(R1, R2), and

� 0 =
1

2πi

∫
CR(0)∪I∪(−Cr(0))∪(−I)

g(w) dw =
1

2πi

∫
CR(0)∪(−Cr(0))

f(w)− f(z)

w − z
dw,

=⇒ f(z) =
1

2πi

∫
CR(0)∪(−Cr(0))

f(z)

w − z
dw =

1

2πi

∫
CR(0)∪(−Cr(0))

f(w)

w − z
dw

� on CR(0), since 0 < r < |z| < |w| ∀w ∈ CR(0) =⇒ |z|
|w|

< 1, the sum

∞∑
k=0

zk

wk+1
=

1

w
· 1

1− (z/w)
=

1

w − z
converges uniformly on CR(0),
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� on Cr(0), since 0 < |w| < |z| ∀w ∈ Cr(0) =⇒ |w|
|z|

< 1, the sum

−
−1∑

k=−∞

zk

wk+1
= −

∞∑
k=0

wk

zk+1
= −1

z
· 1

1− (w/z)
=

−1

z − w
converges uniformly on Cr(0).

Hence we have

f(z) =
1

2πi

∫
CR(0)

f(w)

w − z
dw− 1

2πi

∫
Cr(0))

f(w)

w − z
dw

=
1

2πi

∫
CR(0)

f(w)
∞∑
k=0

zk

wk+1
dw +

1

2πi

∫
Cr(0)

f(w)
−1∑

k=−∞

zk

wk+1
dw

=
∞∑
k=0

(
1

2πi

∫
CR(0)

f(w)

wk+1
dw

)
zk +

−1∑
k=−∞

(
1

2πi

∫
Cr(0)

f(w)

wk+1
dw

)
zk

converges for all z ∈ A(R1, R2).

Examples

(a) The following Laurent expansion converges on A(0,∞).

e1/z =
∞∑
k=0

1

k! zk
= 1 +

1

z
+

1

2 z2
+

1

3! z3
+ · · · .

(b) On |z − 0| < 1, since
1

1 + z
= 1− z + z2 − z3 + z4 − · · · , and 1

(1 + z)2
= − d

dz

(
1

1 + z

)
,

1

z(1 + z)2
=

1

z

1

(1 + z)2
=

1

z

(
1− 2z + 3z2 − 4z3 + · · ·

)
=

∞∑
k=0

(−1)k (k + 1) zk−1

On |z − (−1)| = |z + 1| < 1,

1

z(1 + z)2
= − 1

1− (z + 1)

1

(z + 1)2

= − 1

(z + 1)2
[
1 + (z + 1) + (z + 1)2 + (z + 1)3 + · · ·

]
= −

∞∑
k=−2

(z + 1)k

Theorem If f(z) is analytic on the annulus R1 < |z−α| < R2, then f has a unique representation

f(z) =
∞∑

k=−∞

ck(z − α)k where ck =
1

2πi

∫
Cρ(α)

f(z)

(z − α)k+1
dz

for each k ∈ Z, and for any circle Cρ(α) of radius R1 < ρ < R2 with center at α.

Remark The sum
∞∑
k=1

c−k(z − α)−k is called the singular part (or principal part), and the sum

∞∑
k=0

ck(z−α)k is called the analytic part of f(z) =
∞∑

k=−∞

ck(z−α)k near α. Note that the principal

part does not contain a nonzero constant term, and recall that
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� α is a removable singularity iff ck = 0 for k < 0,

e.g. f(z) =
sin z

z
=

∞∑
k=0

(−1)kz2k

(2k + 1)!
has a removable singularity at z = 0.

� α is a pole of order n iff ck = 0 for k < −n, and c−n ̸= 0.

� α is an essential singularity iff ck ̸= 0 for infinitely many negative k.

Proposition If f(z) has a pole of order k at α, then
1

f(z)
is analytic near α and has a zero of

order k at α.

Proof Write

f(z) =
g(z)

(z − α)k
.

Then g(z) is analytic and g(z) ̸= 0 on a neighborhood of α, so

1

f(z)
=

(z − α)k

g(z)

is analytic on a neighborhood of α and has a zero of order k at α.

Example Let f(z) =
1

ez − 1
. Since e0 = 1, and lim

z→0
zf(z) = 1, f has a simple pole at z = 0.

Thus f(z) has a Laurent series expansion
∞∑

n=−1

cnz
n about z = 0 with c1 = 1. Now, as both

g(z) =
z

ez − 1
= zf(z) =

∞∑
n=−1

cnz
n+1 =

∞∑
n=0

cn−1z
n and

1

g(z)
=
ez − 1

z
=

∞∑
n=1

zn−1

n!
=

∞∑
n=0

zn

(n+ 1)!

are analytic at z = 0, we have(
∞∑
n=0

cn−1z
n

)(
∞∑
n=0

zn

(n+ 1)!

)
= g(z) · 1

g(z)
= 1

=⇒
(
c−1 + c0z + c1z

2 + · · ·+ cn−1z
n + · · ·

)(
1 +

z

2!
+
z2

3!
+ · · ·+ zn

(n+ 1)!
+ · · ·

)
= 1

=⇒ c−1 +
(c−1

2!
+ c0

)
z +

(c−1

3!
+
c0
2!

+ c1

)
z2 + · · ·+

(
c−1

(n+ 1)!
+
c0
n!

+ · · ·+ cn−1

)
zn + · · · = 1

=⇒ c−1 = 1 and
c−1

(n+ 1)!
+
c0
n!

+
n∑

k=2

ck−1

(n− (k − 1))!
=

n∑
k=0

ck−1

(n− (k − 1))!
= 0 for n ≥ 1

In particular, c−1 = 1, c0 = −1/2, c1 = 1/12, etc. Finally, in a deleted neighbourhood of z = 0,
it is straightforward to verify that

∞∑
n=1

cnz
n = f(z)− c−1

z
− c0 =

1

ez − 1
− 1

z
+

1

2
which converges absolutely on C \ {0}

where
1

ez − 1
− 1

z
+

1

2
is an odd function since

1

e−z − 1
− 1

(−z)
+

1

2
=

ez

1− ez
+

1

z
+

1

2
= −e

z − 1 + 1

ez − 1
+

1

z
+

1

2
= −

(
1

ez − 1
− 1

z
+

1

2

)
∀ z ∈ C \ {0}
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So, c2n = 0 for all n ≥ 1, and the previous recurrence relation can be rewritten as c−1 = 1,
c0 = −1/2 and

1

(2n+ 1)!
− 1

2 (2n)!
+

n∑
k=1

c2k−1

(2n− (2k − 1))!
= 0 for n ≥ 1

Remark The coefficients Bn of the Taylor expansion

z

ez − 1
=

∞∑
n=0

Bnz
n

n!

are known as Bernoulli numbers. Thus cn = Bn+1/(n+ 1)! for every n ≥ 1.

§ 2 Partial Fractions and Factorization

2.1 Partial Fractions

Theorem Let f be meromorphic in Ĉ = C ∪ {∞}, i.e. analytic in Ĉ except at isolated poles.
Suppose that lim

z→∞
f(z) = ∞, i.e. f has a pole at ∞. Then f(z) is a rational function, i.e.

f(z) = P (z)/Q(z), where P and Q are polynomials.

Proof Since
lim
z→∞

f(z) = ∞ ⇐⇒ lim
z→0

f(1/z) = ∞,

which implies that

� f(1/z) has a pole at z = 0,

� there is a disk Dε(0) = {z ∈ C | |z| < ε} such that

f(1/z) has no other pole in Dε(0) ⇐⇒ f(z) has no other pole in C \D1/ε(0).

Since D̄1/ε(0) = {z ∈ C | |z| ≤ 1/ε} is compact and all poles are isolated, there are only finitely
many poles z1, z2, . . . , zn of f(z) in D̄1/ε(0) (and in C). Note that

� at each pole zk ∈ C,

f(z) = Pk

(
1

z − zk

)
+Gk(z),

where Pk (1/(z − zk)) is the principal part of f around zk and Gk is analytic on a neighbor-
hood Drk(zk) of zk.

� at z = ∞,

f

(
1

z

)
= P∞

(
1

z

)
+G∞(z),

where as before, G∞(z) is analytic in a neighborhood Bε(0) of z = 0.

and the function

H(z) = f(z)− P∞(z)−
n∑

k=1

Pk

(
1

z − zk

)
is entire and bounded, so, by the Liouville’s Theorem, H(z) is a constant and f(z) is a rational
function.
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Theorem 4. (Mittag-Leffler Theorem) Let (ζk)
∞
k=1 be a sequence in C such that lim

k→∞
ζk = ∞

and Pk(ζ) be polynomials without constant term. Then there exist functions f meromorphic in
C with poles at just the points ζk and corresponding singular parts Pk (1/(z − ζk)) .

The most general f of this kind can be written

f(z) = g(z) +
∑
k

[
Pk

(
1

z − ζk

)
− pk(z)

]
(1)

where g is analytic and the pk are polynomials.

Proof Without loss of generality, we assume ζk ̸= 0 for all k.

Since Pk (1/(z − ζk)) is analytic for |z| < |ζk|, we can apply the Taylor formula (4.3.1 Theorem
8) to expand ψ(z) := Pk (1/(z − ζk)) around z = 0 and write

ψ(z) =

Nk∑
ℓ=0

ψ(ℓ)(0)

ℓ!
zℓ + ψNk+1(z) z

Nk+1 =: pk(z) + ψNk+1(z) z
Nk+1

for an Nk to be specified shortly, and

ψNk+1(z) =
1

2πi

∫
C

ψ(ζ)

ζNk+1 (ζ − z)
dζ

Let C to be the circle with radius |ζk|/2 and center 0, and Mk be the maximum of |ψ| on C.

0

|ζk|/2

ζk|ζk|

ζ

C

|ζk|/4
z

D|ζk|/4(0)

|ζ − z|

For each z ∈ D|ζk|/4(0), since |ζ − z| ≥ |ζk|/4,

|ψNk+1(z)| ≤
1

2π

2π|ζk|
2

Mk

(|ζk|/2)Nk+1 (|ζk|/4)
= 2Mk

(
2

|ζk|

)Nk+1

,

=⇒ |ψ(z)− pk(z)| :=

∣∣∣∣∣ψ(z)−
Nk∑
ℓ=0

ψ(ℓ)(0)

ℓ!
zℓ

∣∣∣∣∣ = ∣∣ψNk+1(z)z
Nk+1

∣∣ ≤ 2Mk

(
2|z|
|ζk|

)Nk+1

≤Mk2
−Nk

=⇒
∣∣∣∣Pk

(
1

z − ζk

)
− pk(z)

∣∣∣∣ = |ψ(z)− pk(z)|≤ 2−k by choosing Nk such that Mk2
k ≤ 2Nk (2)

Claim :
∑
k

[
Pk

(
1

z − ζk

)
− pk(z)

]
converges uniformly in each disk DR(0) (except at the

poles) to a meromorphic function in C.
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Proof of Claim For each R > 0, we write∑
k

[
Pk

(
1

z − ζk

)
− pk(z)

]
=

∑
|ζk|/4≤R

[
Pk

(
1

z − ζk

)
− pk(z)

]
+

∑
|ζk|/4>R

[
Pk

(
1

z − ζk

)
− pk(z)

]

Since DR(0) is compact,

� the first term on the right-hand side corresponds to a finite sum and has Pk (1/(z − ζk)) as
the singular part at the pole ζk,

� the second term on the right-hand side converges uniformly to an analytic function in DR(0)
by Eq.(2) and the Weierstrass’ Theorem,

the function h defined by

h(z) :=
∑
k

[
Pk

(
1

z − ζk

)
− pk(z)

]
is a meromorphic function in C.

Finally, if f is a meromorphic function with the same poles ζk and same singular parts as h,
g = f − h is analytic and f = g + h. □

2.2 Infinite Products

Definition An infinite product
∞∏
n=1

an of complex numbers converges if there exists N ≥ 1 such

that ak ̸= 0 for all k ≥ N and the limit of partial products

a = lim
n→∞

n∏
k=N

ak

exists and is nonzero. In this case,

∞∏
n=1

an :=

(
N−1∏
n=1

an

)
a

Examples

i.
∞∏
k=1

(1 + 1/k) =
2

1
· 3
2
· 4
3
· . . . diverges (to ∞) since lim

n→∞

n∏
k=1

(1 + 1/k) = lim
n→∞

n = ∞.

ii.
∞∏
k=2

(1− 1/k) =
1

2
· 2
3
· 3
4
· . . . diverges to 0,

iii.
∞∏
k=2

(
1− 1/k2

)
=

∞∏
k=2

(k − 1) (k + 1) /k2 converges (to 1/2),
∞∏
k=1

(
1− 1/k2

)
converges (to 0).

Remark Note that

�

∞∏
n=1

an converges iff at most a finite number of a′ns are zero, and if the partial products

formed by the nonvanishing a′ks tend to a finite nonzero limit a.

� if
∞∏
n=1

an converges, then lim
n→∞

an = 1 ⇐⇒ if
∞∏
n=1

(1 + an) converges, then lim
n→∞

an = 0.
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Theorem 5 Let 1+an ̸= 0 for all n ∈ N. Then
∞∏
n=1

(1 + an) converges iff
∞∑
n=1

Ln (1 + an) converges,

where Ln is the principal branch of the logarithm, i.e. −π < Im(Ln z) = Argz ≤ π.

Remark That is the question of the convergence of infinite products can be reduced to the
question of the convergence of infinite sums.

Proof (⇐=) Let

Sn =
n∑

k=1

Ln (1 + ak) =
n∑

k=1

[log |1 + ak|+ iArg (1 + ak)] and Pn :=
n∏

k=1

(1 + ak) = eSn

Hence, by the continuity of ez,

if
∞∑
n=1

Ln (1 + an) = lim
n→∞

Sn = S =⇒
∞∏
n=1

(1 + an) = lim
n→∞

Pn = lim
n→∞

eSn = eS = P ̸= 0

(=⇒) If lim
n→∞

Pn = P ̸= 0, since Pn = eSn = eSn+2mπi ∀m ∈ Z, there exists Mn ∈ Z for each

n ∈ N such that

− π <
n∑

k=1

Arg(1 + ak)− ArgP + 2πMn ≤ π for all n ∈ N,

and Ln

(
Pn

P

)
= Sn − LnP + 2πiMn, Ln

(
Pn+1

P

)
= Sn+1 − LnP + 2πiMn+1

=⇒ 2πi (Mn+1 −Mn) = Ln

(
Pn+1

P

)
− Ln

(
Pn

P

)
− Ln (1 + an+1)

=⇒


0 = Ln

∣∣∣∣Pn+1

P

∣∣∣∣− Ln

∣∣∣∣Pn

P

∣∣∣∣− Ln |1 + an+1|

2π (Mn+1 −Mn) = Arg

(
Pn+1

P

)
− Arg

(
Pn

P

)
− Arg (1 + an+1)

Now,

lim
n→∞

[
Arg

(
Pn+1

P

)
− Arg

(
Pn

P

)]
= 0 since lim

n→∞

Pn

P
= 1

=⇒ lim
n→∞

2π |Mn+1 −Mn| = lim
n→∞

|Arg (1 + an+1)|

=⇒ lim
n→∞

2π |Mn+1 −Mn| = 0 since |Arg (1 + an+1)| ≤ π, and Mn, Mn+1 ∈ Z

We must have Mn+1 =Mn for n large enough, i.e. for n sufficiently large, Mn =M ∈ Z. So, for
such large n, since lim

n→∞
Pn/P = 1,

Ln

(
Pn

P

)
= Sn − LnP + 2πiM =⇒

∞∑
n=1

Ln (1 + an) = lim
n→∞

Sn = LnP − 2πiM □

Definition The infinite product
∞∏
n=1

(1 + an) is said to be absolutely convergent if the infinite

sum
∞∑
n=1

Ln (1 + an) is absolutely convergent.
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Theorem 6 The product
∞∏
n=1

(1 + an) is absolutely convergent iff
∞∑
n=1

|an| converges, that is

∞∑
n=1

Ln (1 + an) converges absolutely iff
∞∑
n=1

|an| converges.

Remark Since |−an| = |an|,
∞∏
n=1

(1 + an) is called absolutely convergent if
∞∏
n=1

(1 + |an|) converges.

Proof Since the convergence for
∞∑
n=1

Ln (1 + an) or
∞∑
n=1

|an| implies lim
n→∞

an = 0, and since

lim
z→0

Ln (1 + z)

z
= 1 =⇒ ∃N ∈ N such that, if n ≥ N, then

1

2
|an| ≤ |Ln (1 + an)| ≤

3

2
|an|

Thus, we have
∞∑
n=1

|an| converges ⇐⇒
∞∑
n=1

|Ln (1 + an)| converges

Remark We wish to consider analytic functions defined by infinite products; i.e., functions of
the form

f(z) =
∞∏
k=1

(1 + uk(z))

Recall that f is analytic if each function uk, k = 1, 2, . . . is analytic and the partial products
converge to their limit function uniformly on compacta.

Theorem Suppose that uk(z) is analytic in an open connected subset Ω for k = 1, 2, . . . , and

that
∞∑
k=1

|uk(z)| converges uniformly on compacta. Then the product
∞∏
k=1

(1 + uk(z)) converges

uniformly on compacta and represents an analytic function in Ω.

Proof Let D be a compact subset of Ω.

Since
∞∑
k=1

|uk(z)| converges uniformly on D,

• for sufficiently large k, |uk(z)| < 1 there. Hence, we may assume that 1 + uk ̸= 0 for all k.

• If we then take N large enough so that
∞∑

k=N+1

|uk(z)| < ε/2, it follows, as in the proof of

Theorem 6, that ∣∣∣∣∣
∞∑

k=N+1

Ln (1 + uk(z))

∣∣∣∣∣ ≤ ε throughout D.

i.e.,
∞∑
k=1

Ln (1 + uk(z)) converges uniformly on D to a limit function S(z). It follows that S(D) is

bounded. Finally, since the exponential function is uniformly continuous in any bounded domain,

PN(z) = exp

(
N∑
k=1

Ln (1 + uk(z))

)
=

N∏
k=1

(1 + uk(z))
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converges uniformly to its limit function eS(z). □

Examples

1.
∞∑
k=1

(
1 + zk

)
converges uniformly on any compact subset of the unit disk D1(0) since any

compact subset is contained in a disk Dδ(0) of radius δ < 1. Hence

∞∑
k=1

|zk| ≤
∞∑
k=1

δk =
δ

1− δ

and, by the M -test,
∞∑
k=1

|zk| is uniformly convergent.

2.
∞∏
k=1

(1 + 1/kz) represents an analytic function in the half-plane H = {z ∈ C | Re z > 1}. In

any compact subset of H, Re z ≥ 1 + δ throughout so that∣∣∣∣ 1kz
∣∣∣∣ = 1

kRe z
≤ 1

k1+δ
, k = 1, 2, . . .

Hence
∞∑
k=1

∣∣∣∣ 1kz
∣∣∣∣ and, consequently, ∞∏

k=1

(
1 +

1

k2

)
are uniformly convergent.

2.3 Canonical Products

If g is an entire function, f(z) := eg(z) is entire and everywhere nonzero. Conversely, if f is an
entire, nonzero function, then, since f ′/f is an entire function which has a primitive g that is
also entire such that g′ = f ′/f and

d

dz

[
f(z)e−g(z)

]
= f ′(z)e−g(z) − f(z)

f ′(z)

f(z)
e−g(z) = 0 =⇒ f(z)e−g(z) = C ∈ C

so, f(z) is of the form f(z) = eg(z) for some entire function g(z).

By this method we can also find the most general entire function with a finite number of zeros.
Assume that f(z) has M zeros at the origin (M may be zero), and denote the other zeros by
a1, a2, . . . , aN , multiple zeros being repeated. Then

f(z) = zMeg(z)
N∏

n=1

(
1− z

an

)
for some entire function g.

If there are infinitely many zeros, we can try to obtain a similar representation by means of an
infinite product. the obvious generalization would be

f(z) = zMeg(z)
∞∏
n=1

(
1− z

an

)
. (3)

Indeed, if
∞∑
n=1

1/|an| converges,
∞∑
n=1

|z/an| converges uniformly on every compact set, so that the

product
∞∏
n=1

(1− z/an) is uniform convergent on compacta and gives the desired entire function.
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Moreover, if
∞∑
n=1

1/|an| diverges, but
∞∑
n=1

1/|an|2 converges, we can modify the above construction

by considering

f(z) = zMeg(z)
∞∏
n=1

[(
1− z

an

)
ez/an

]
. (4)

With the “convergence factors” ez/an , the product is uniformly convergent on compacta since,
for |an| > 2|z| ⇐⇒ |z|/|an| < 1/2,∣∣∣∣log [(1− z

an

)
ez/an

]∣∣∣∣ =
∣∣∣∣∣
(
− z

an
− 1

2

(
z

an

)2

− 1

3

(
z

an

)3

− · · ·

)
+

z

an

∣∣∣∣∣
≤
∣∣∣∣ z2a2n
∣∣∣∣ (1

2
+

1

4
+

1

8
+ · · ·

)
=

∣∣∣∣ z2a2n
∣∣∣∣ .

Hence the series

∞∑
n=1

log
[
(1− z/an) e

z/an
]
, z ̸= an

is uniformly convergent and the product is uniformly convergent on compacta.

By the same reasoning, if
∞∑
n=1

1/|an|Nn+1 converges for some integer Nn, then the infinite product

∞∏
n=1

(
1− z

an

)
e

z
an

+
1
2

(
z
an

)2
+
1
3

(
z
an

)3
+···+ 1

Nn

(
z
an

)Nn

(5)

is uniformly convergent on compacta and represents an entire function with the desired zeros.

However, since there are sequences (an)
∞
n=1 such that lim

n→∞
an = ∞ and yet

∞∑
n=1

1/|an|N diverges

for all N, e.g. (an)
∞
n=2 = (logn)∞n=2, we must introduce a slight variation for the general case.

Theorem 7 (Weierstrass Factorization Theorem) There exists an entire function with
arbitrarily prescribed zeros (an)

∞
n=1 , as long as lim

n→∞
an = ∞ if the numbers of zeros is infinite.

Moreover, every entire function with these and no other zeros can be written as

f(z) = zMeg(z)
∞∏
n=1

(1− z/an) e
z
an

+
1
2

(
z
an

)2
+···+ 1

Nn

(
z
an

)Nn

(6)

where the product is taken over all an ̸= 0, the Nn are integers, and g is an entire function.

Proof Let (an)
∞
n=1 be a sequence of complex numbers such that an ̸= 0 for all n ∈ N and

lim
n→∞

an = ∞. We shall prove the existence of polynomials pn(z) such that

∞∏
n=1

(
1− z

an

)
epn(z) (7)

converges to an entire function. For each n ∈ N, let

rn(z) := log

[(
1− z

an

)
epn(z)

]
= log

(
1− z

an

)
+ pn(z)
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where the branch of the logarithm shall be chosen so that −π < Im rn(z) ≤ π.

For a given R we consider only the terms with |an| > R ⇐⇒ (R/|an|) < 1. In the disk |z| ≤ R
the principal branch of log (1− z/an) can be developed in a Taylor series

log

(
1− z

an

)
= − z

an
− 1

2

(
z

an

)2

− 1

3

(
z

an

)3

− · · ·

We reverse the signs and choose pn(z) as a partial sum

pn(z) =
z

an
+

1

2

(
z

an

)2

+
1

3

(
z

an

)3

+ · · ·+ 1

Nn

(
z

an

)Nn

Then rn(z) has the representation

rn(z) = − 1

Nn + 1

(
z

an

)Nn+1

− 1

Nn + 2

(
z

an

)Nn+2

− · · ·

and we obtain easily the estimate

|rn(z)| ≤
1

Nn + 1
(R/|an|)Nn+1 1

1−R/|an|
(8)

Suppose now the series

∞∑
n=1

1

Nn + 1
(R/|an|)Nn+1 (9)

converges. By the estimate (8) it follows that lim
n→∞

rn(z) = 0, and hence −π < Im rn(z) ≤ π

as soon as n is sufficiently large. Moreover, the comparison shows that the series
∑

rn(z) is

absolutely and uniformly convergent for |z| ≤ R, and thus the product (7) represents an analytic
function in |z| < R. For the sake of reasoning we had to exclude the values |an| ≤ R, but it
is clear that the uniform convergence of (7) is not affected when the corresponding factors are
again taken into account.

It remains only to show that the series (9) can be made convergent for all R. But this is obvious,
for if we take Nn = n it is clear that (9) has a majorant geometric series with ratio < 1 for any
fixed value of R. □

Corollary Every function which is meromorphic on all of C is the quotient of two entire functions.

Indeed, if f is meromorphic on C, the theorem enables us to construct an entire function g whose
zeros are the poles of f. F (z) := f(z)g(z) is then an entire function, and

f(z) =
F (z)

g(z)

Example 1. To find an entire function f with a single zero at every negative integer ak = −k, note

that
∞∑
k=1

1/|ak| diverges but
∞∑
k=1

1/|ak|2 converges so that we can define f(z) =
∞∏
k=1

(1 + z/k) e−z/k.

Example 2. An entire function with zeroes at all the points ak = log k, k = 1, 2, . . . , is given by

f(z) = z
∞∏
k=2

(
1− z

log k

)
exp

(
z

log k
+

z2

2 log2 k
+ · · ·+ zk

k logk k

)
.
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Example 3. An entire function with a single zero at every integer is given by

f(z) = z
∞∏
k=1

[
(1− z/k) ez/k (1 + z/k) e−z/k

]
= z

∞∏
k=1

(
1− z2/k2

)
.

Proposition Let f(z) = z

∞∏
k=1

(
1− z2/k2

)
. Then f(z) = (sin πz) /π.

Proof Consider the quotient Q(z) = z
∞∏
k=1

(
1− z2/k2

)
/ sin πz. Note that

• Q is entire and zero-free.

• to show that Q is constant we seek estimates on its growth for large z, and assume then that
N/2 ≤ |z| ≤ N.

By the Maximum Modulus Theorem, |Q(z)| is bounded by the maximum value assumed by Q on
the square of side 2N + 1 centered at the origin. We have already proved that along this square
(which avoids the zeros of sin πz), |1/ sin πz| ≤ 4. Moreover, since ex ≥ 1 + x for all x ∈ R,∣∣∣∣∣

∞∏
k=1

(
1− z2/k2

)∣∣∣∣∣ =
∣∣∣∣∣
N∏
k=1

(1− z/k) (1 + z/k)
∞∏

k=N+1

(
1− z2/k2

)∣∣∣∣∣ ≤
N∏
k=1

e2|z/k|
∞∏

k=N+1

e|z
2/k2|

≤ exp
(
2|z| (1 + log N) + |z2|/N

)
since

N∑
k=1

1/k = 1 +
N∑
k=2

1/k < 1 + log N and
∞∑

k=N+1

1/k2 <

∫ ∞

N

(
1/x2

)
dx = 1/N

CN

−(N + 1
2
)

CN

i(N + 1
2
)

−i(N + 1
2
)

N N + 1N/2−N/2−N

z

Also note that for large N, 2 (1 + log N) <
√
N/2 ≤ |z|1/2 while |z2|/N ≤ |z|, it follows that

|Q(z)| =

∣∣∣∣∣z
∞∏
k=1

(
1− z2/k2

)∣∣∣∣∣
|sin πz|

≤ A exp
(
|z3/2|

)
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By the extended Liouville’s Theorem, we must have

z
∞∏
k=1

(
1− z2/k2

)
sin πz

= AeBz

However, Q is an even function so that B = 0, and the constant A can be determined by noting
that A = Q(0) = lim

z→0
(z/ sin πz) = 1/π. □

Some consequences of the above proposition:

i. Setting z = 1/2, we have

1 =
π

2

∞∏
k=1

[
1− 1/ (2k)2

]
⇐⇒ 2

π
=

(
1 · 3
2 · 2

)(
3 · 5
4 · 4

)(
5 · 7
6 · 6

)
· · · ⇐⇒ π = 2 ·

(
2 · 2
1 · 3

)(
4 · 4
3 · 5

)(
6 · 6
5 · 7

)
· · ·

ii. Suppose we expand the terms in the product to obtain an infinite series. Then we will have

sin πz = πz
∞∏
k=1

(
1− z2/k2

)
= πz

[
1−

(
∞∑
k=1

1

k2

)
z2 + 2

(
∞∑

k, j=1

1

k2j2

)
z4 −+ · · ·

]

A comparison with the familiar (Maclaurin or Taylor) power series

sin πz = πz − π3z3

6
+
π5z5

120
−+ · · ·

shows that
∞∑
k=1

1

k2
=
π2

6
.

Genus of a Canonical Product

The proof of the Weierstrass Factorization Theorem has shown that the canonical product

∞∏
n=1

(1− z/an) e
z
an

+
1
2

(
z
an

)2
+···+1

h

(
z
an

)h

where h is independent of n (10)

converges and represents an entire function provided that the series
∞∑
n=1

(R/|an|)h+1 / (h+ 1)

converges for all R, that is to say provided that
∞∑
n=1

1/|an|h+1 converges.

Definition The expression (10) is called a canonical product associated with the sequence
(an)

∞
n=1, and h is called the genus of the canonical product if h is the smallest integer such

that
∞∑
n=1

1/|an|h+1 converges.
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Definition Let f(z) be an entire function with arbitrarily prescribed zeros

(an)
∞
n=1 , lim

n→∞
an = ∞.

If f(z) can be represented in the form

f(z) = zMeg(z)
∞∏
n=1

(1− z/an) e
z
an

+
1
2

(
z
an

)2
+···+1

h

(
z
an

)h

(11)

where g(z) is a polynomial of degree deg g, and the product is taken over all an ̸= 0, then
f(z) is said to be of finite genus and the genus of f(z) is defined to be max{deg g, h}, the
maximum between the degree of g(z) and the genus of the canonical product. If there is no such
representation, the genus of f(z) is infinite.

Examples

• The canonical representation of a genus 0 = max{deg g, h} entire function is of the form

f(z) = AzM
∞∏
n=1

(1− z/an) for some A ∈ C

• The canonical representation of genus 1 = max{deg g, h} entire functions can have either of
the following two forms:

(1) f(z) = BzMeαz
∞∏
n=1

(1− z/an) e
z/an for some B ∈ C∗ , α ∈ C

with
∞∑
n=1

1/|an| divergent and
∞∑
n=1

1/|an|2 convergent (h = 1).

(2) f(z) = CzMeαz
∞∏
n=1

(1− z/an) for some C ∈ C∗ , α ∈ C∗

with
∞∑
n=1

1/|an| convergent (h = 0).

• Since sin πz = 0 for z = ±n, n ∈ N ∪ {0},
∞∑
n=1

1/n = ∞ and
∞∑
n=1

1/n2 <∞ (h = 1), we have

sin πz = zeg(z)
∞∏
n=1

(1− z/n) ez/n (1 + z/n) e−z/n = zeg(z)
∏
n ̸=0

(1− z/n)

=⇒ π cotπz =
1

z
+ g′(z) +

∑
n ̸=0

1

z − n

=⇒ g′(z) = π cotπz − 1

z
−
∑
n̸=0

1

z − n
is bounded and entire

=⇒ g′(z) = 0 =⇒ eg(z) = π since lim
z→0

sin πz

z
= π and sinπz = πz

∏
n̸=0

(1− z/n)

Thus sin πz is an entire function of genus 1.
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§ 3 Entire Functions

3.2 Hadamard’s Theorem

Definition Let f be an entire function, and M(R) = max
|z|=R

|f(z)|, the maximum of |f(z)| on

|z| = R. The order λ of f is defined by

λ = lim sup
n→∞

log log M(R)

log R
(12)

In other words, λ is the smallest number such that

M(R) ≤ eR
λ+ε

for all ε > 0, as soon as R is large enough.

Theorem 8 (Hadamard Factorization Theorem) The genus h and the order λ of an entire
function satisfy the double inequality h ≤ λ ≤ h+ 1.

The proof of this theorem is somewhat lengthy, and we will skip it in this course. You can
however find the key steps of the proof in Ahlfors’ textbook.

Corollary An entire function of fractional order assumes every finite value infinitely many times.

Proof ∀ z0 ∈ C, f and f − z0 have the same order. Thus, to prove the corollary we just want to
show than an entire function with fractional order has infinitely many zeros.

Let us assume that f has a finite number of zeros. Then there exists a polynomial p such that

F =
f

p
does not have any zeros, and has the same order λ as f. Hadamard’s factorization theorem

then tells us that F = eg(z), where g is a polynomial of degree h such that h ≤ λ ≤ h+ 1. Now,
it is clear that the order of F = eg(z) is h itself, which is an integer. We have a contradiction,
which proves the corollary. □

Analytic Functions Defined by Definite Integrals

Recall that Morera’s Theorem (in 4.2.3) says that : if f is continuous in an open connected

set Ω, and satisfies that

∫
γ

f(z) dz = 0 for all closed curves γ in Ω, then f is analytic in Ω. So,

Morera’s Theorem can be used to prove the analyticity of certain functions given in integral form
as follows.

Theorem Suppose φ(z, t) is a continuous function of t, a ≤ t ≤ b, for fixed z and an analytic
function of for each z in the open connected set D for fixed t. Then

f(z) =

∫ b

a

φ(z, t) dt is analytic in D (13)

Proof Since f is a continuous function of z, according to Morera’s Theorem, we need only prove

that

∫
γ

f(z) dz = 0 for any rectangle γ ⊂ D. Since φ is continuous in t and analytic in z,

∫
γ

f(z) dz =

∫
γ

(∫ b

a

φ(z, t) dt

)
dz =

∫ b

a

(∫
γ

φ(z, t) dz

)
dt = 0
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Examples

1. f(z) =

∫ 1

0

dt/ (t− z) is analytic in D = C \ [0, 1].

2. g(z) =

∫ ∞

0

dt/
(
et − z

)
is analytic in D = C \ [1,∞). Although g is given by an improper

integral, it is the uniform limit of

gn(z) =

∫ n

0

dt

et − z

on any compact subset of D = C \ [1,∞), and hence g is analytic.

Analytic Functions Defined by Dirichlet Series

Series of the form

∞∑
n=1

an
nz

where an ∈ C, n ∈ N

are known as Dirichlet Series.

Note that n−z = exp(−z log n) represents an entire function for every n ∈ N. (log n is chosen
as the principal value; i.e., log n is real-valued, so n−z > 0 is positive for all z ∈ R.) Since the
partial sums are entire, a function f(z), defined by a Dirichlet series, is analytic in any region
where the series converges uniformly.

According to the theorems below, the natural regions of convergence for Dirichlet series are
half-planes of the form Re z > x0, much as disks centered at the origin are the natural regions
associated with power series.

Theorem If
∞∑
n=1

an/n
z converges for z = z0, then it converges for all z ∈ H = {z | Re z > Re z0}.

Moreover, the convergence is uniform in any compact subset of the half-plane H.

Proof For each k ∈ N, z ∈ H, let Ak =
k∑

n=1

an/n
z0 , w = z − z0 and bk = 1/kw. Since

•
∞∑
n=1

an/n
z0 converges, there exists an A > 0 such that |Ak| =

∣∣∣∣∣
k∑

n=1

an/n
z0

∣∣∣∣∣ < A for all k ∈ N,

• Re w = Re (z − z0) > 0 for z ∈ H, lim
k→∞

|bk| = lim
k→∞

1/kRe w = 0 and

|bk − bk+1| =
∣∣∣∣ 1kw − 1

(k + 1)w

∣∣∣∣ = ∣∣∣∣∫ k+1

k

w t−w−1 dt

∣∣∣∣ < ∫ k+1

k

|w| |dt|
kRe w+1

=
1

kRe w+1
→ 0 as k → ∞,

•

∣∣∣∣∣
N∑

k=M

ak
kz

∣∣∣∣∣ = ∣∣∣ aMM z
+ · · ·+ aN

N z

∣∣∣ = |(AM − AM−1) bM + · · ·+ (AN − AN−1) bN | ∀M ≤ N ∈ N

≤ |−AM−1bM |+
N−1∑
k=M

|Ak| |bk − bk+1|+ |ANbN |

≤ A

(
|bM |+

N−1∑
k=M

|bk − bk+1|+ |bN |

)
→ 0 as M → ∞
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the Dirichlet series
∞∑
n=1

an/n
z converges for all z ∈ H.

Finally, note that if K is a compact subset of H, there is a δ > 0 with Re(z − z0) > δ for all
z ∈ K, as well as a positive constant B with |z| < B throughout K. Hence the partial sums
N∑

k=M

ak/k
z will have a uniformly small absolute value for all z ∈ K, once M is sufficiently large.

So the series converges to its limit function uniformly in K. □

Remark Note that in the above proof, we never actually used the convergence of the Dirichlet
series at z0. The only actual requirement for the conclusion was that there was a finite upper
bound for the absolute value of its partial sums.

Example Suppose an = (−1)n. Then
∞∑
n=1

an/n
z has bounded partial sums (although it diverges)

at z = 0. According to the above Theorem, then, it converges and represents an analytic function
in the right half-plane: Re z > 0. The fact that it diverges at z = 0 also implies that its partial
sums are not bounded for any value of z with a negative real part.

Theorem If
∞∑
n=1

an/n
z converges for some, but not all, values of z, there exists a real constant

x0 (called the abscissa of convergence) such that
∞∑
n=1

an/n
z converges if Re z > x0 and diverges

if Re z < x0.

Proof Let x0 = inf{Re z |
∞∑
n=1

an/n
z converges}. By the above Theorem, if x0 = ∞, the series

converges for all z. If the series neither converges for all z nor diverges for all z, −∞ < x0 < ∞
and the theorem follows from the above Theorem.

Theorem Suppose
∞∑
n=1

an/n
z converges absolutely for some, but not all, values of z, there exists

a real constant x1 (called the abscissa of absolute convergence) such that
∞∑
n=1

an/n
z converges

absolutely if Re z > x1 and does not converge absolutely if Re z < x1.

Example The function ζ(z) is defined by the Dirichlet series
∞∑
n=1

1/nz. This series converges

absolutely for Re z > 1, and diverges if Re z < 1.

Since Dirichlet series converge uniformly within their half-plane of convergence, they can be

differentiated term-by-term. So if f(z) =
∞∑
n=1

an/n
z, then

f ′(z) =
∞∑
n=1

−an log n

nz
.

For any value of z within the half-planes of convergence for two Dirichlet series, we have :

∞∑
n=1

an
nz

+
∞∑
n=1

bn
nz

=
∞∑
n=1

an + bn
nz

.
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We can also multiply two Dirichlet series. Rewriting the product as another Dirichlet series
involves a rearrangement of the terms, which is justified if the two series are absolutely convergent.
Hence, within the half-planes of absolute convergence, we have

∞∑
n=1

an
nz

·
∞∑
n=1

bn
nz

=
∞∑
n=1

cn
nz

where cn =
∑
d |n

adbn/d

i.e. cn is defined as the “convolution” of an and bn, and the sum is taken over all the positive
divisors of n.

Example

ζ2(z) =
∞∑
n=1

1

nz

∞∑
n=1

1

nz
=

∞∑
n=1

d(n)

nz

where d(n) equals the number of positive divisors of n.

2.4 The Gamma Function

Lemma If sn = 1 + 1/2 + · · · + 1/n − log n, then lim
n→∞

sn exists. This limit is called the Euler

constant, γ.

Proof tn = 1 + 1/2 + · · · + 1/n − log nincreases with n. Geometrically this is obvious since tn
represents the area of the n− 1 regions between the upper Riemann sum and the exact value for∫ n

1

(1/x)dx. We can write

tn =
n−1∑
k=1

[
1

k
− log

(
k + 1

k

)]
and lim

n→∞
tn =

∞∑
k=1

[
1

k
− log

(
k + 1

k

)]
The series above converges to a positive constant since

0 <
1

k
− log

(
k + 1

k

)
=

1

2k2
− 1

3k3
+

1

4k4
−+ · · · ≤ 1

2k2

This proves the lemma, because lim
n→∞

sn = lim
n→∞

tn. □

Theorem (The Euler Gamma Function) There exists a unique function Γ on C such that

(a) Γ is meromorphic on C
(b) ∀n ∈ N, Γ(n+ 1) = n!

(c) Γ (1/2) =
√
π

(d) ∀ s ∈ C such that Re (s) > 0

Γ(s) =

∫ ∞

0

e−xxs−1 dx

(e) ∀ s ∈ C except for poles

Γ(s) =
∞∑
n=0

(−1)n

n! (n+ s)
+

∫ ∞

1

e−xxs−1 dx is meromorphic on C
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(f) ∀ s ∈ C

1

Γ(s)
= seγs

∞∏
n=1

(
1 +

s

n

)
e−

s
n is entire, where γ = lim

n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
is called the Euler constant (and note that 1/Γ(0) = 0).

(g) ∀ s ∈ C except for poles

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)

(h) Γ has no zeros; in other words, 1/Γ is an entire function

(i) The poles of Γ are the nonpositive integers s = 0, −1, −2, . . . . The pole of Γ at s = −n,
with n ∈ N ∪ {0} is a simple pole, with residue

Ress=−n Γ(s) =
(−1)n

n!

(j) ∀ s ∈ C except for poles, Γ(s+ 1) = sΓ(s)

(k) ∀ s ∈ C except for poles, Γ(s)Γ(1− s) = π/ sin(πs)

Proof of (d) For each s = ξ + iη ∈ C such that Re(s) > 0, and for each n ∈ N, let Γ(s) and
fn(s) be respectively defined by

Γ(s) =

∫ ∞

0

e−x xs−1 dx and fn(s) =

∫ n

0

e−x xs−1 dx for Re(s) > 0

Since

� fn is analytic in {s ∈ C | Re(s) > 0} by Morera’s Theorem,

� |xs−1| = xRe(s)−1 for x > 0,

|Γ(s)− fn(s)| ≤
∫ ∞

n

e−x xRe(s)−1 dx

�

∫ ∞

n

e−x xRe(s)−1 dx converges uniformly in every strip {s ∈ C | a ≥ Re(s) ≥ δ > 0},

so, by the Weierstrass Theorem, Γ(s) is analytic on {s ∈ C | Re(s) > 0} with

Γ(1) =

∫ ∞

0

e−x dx = −e−x
∣∣∞
0

= 1,

and a singularity at z = 0 since

lim
ε→0+

Γ(ε) = lim
ε→0+

∫ ∞

0

e−x

x1−ε
dx ≥ lim

ε→0+

∫ 1

0

e−x

x1−ε
dx ≥ lim

ε→0+

e−1 xε

ε

∣∣∣∣1
0

= ∞ □

Proof of (b), (j) For s such that Re (s) > 0, integration by parts yields

Γ(s+ 1) =

∫ ∞

0

e−x xs dx = −e−x xs
∣∣∞
0
+ s

∫ ∞

0

e−x xs−1 dx = sΓ(s)

=⇒ Γ(n+ 1) = n! Γ(1) = n!

∫ ∞

0

e−x dx = n! −e−x
∣∣∞
0

= n! · 1= n! ∀n ∈ N □
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Proof of (c) When s = 1/2,

Γ (1/2) =

∫ ∞

0

e−x x−1/2 dx
t=

√
x

= 2

∫ ∞

0

e−t2 dt=
√
π. □

Proof of (a), (i) We can use the functional equation Γ(s + 1) = sΓ(s) to analytically continue
Γ to a meromorphic function on C. Let

Γ1(s) :=
Γ(s+ 1)

s
for Re(s) > −1, s ̸= 0

Then

� Γ1 is an extension of Γ on Re(s) > −1 since Γ1(s) = Γ(s) for Re(s) > 0,

� Γ1 is analytic for −1 < Re(s) < 0,

� Γ1 is continuous at each s = iη, η ̸= 0, since

|Γ(iη + 1)| ≤
∫ ∞

0

e−x |xiη| dx =

∫ ∞

0

e−x dx = 1,

and lim
s→iη

Γ1(s) = lim
z→iη

Γ(z + 1)

z
=

Γ(iη + 1)

iη
= Γ1(iη), for η ̸= 0.

Hence, Γ1 is analytic throughout Re(s) > −1, s ̸= 0 by Morera’s Theorem, coincides with Γ for
Re (s) > 0, and has a simple pole at s = 0 with residue 1 since

Γ1(s) =
Γ(s+ 1)

s
∼ Γ(1)

s
=

1

s
as s→ 0 =⇒ Ress=0Γ1 = lim

s→0
sΓ1(s) = Γ(1) = 1.

Likewise, for s such that Re(s) > −2, and s ̸= 0, s ̸= −1, let

Γ2(s) :=
Γ1(s+ 1)

s
=

Γ(s+ 2)

s(s+ 1)
for Re(s) > −2, s ̸= 0, −1

Then Γ2 is analytic on {s ∈ C | Re(s) > −2} \ {0, −1}, coincides with Γ1 for Re (s) > −1, and
has a simple pole at s = −1 with residue −1 since

Ress=−1Γ2 = lim
s→−1

(s+ 1)Γ2(s) = lim
s→−1

(s+ 1)
Γ(s+ 2)

s(s+ 1)
= −1

Suppose Γn−1 is the analytic continuation of Γ to {s ∈ C | Re(s) > −2} \ {−k}n−2
k=0 . Let

Γn(s) :=
Γn−1(s+ 1)

s
=

Γ(s+ n)

s(s+ 1) · · · (s+ n− 1)
for Re(s) > −n, s ̸= −k, 0 ≤ k ≤ n− 1.

Then Γn is meromorphic on Re(s) > −n, and has a simple pole at s = −k with residue
(−1)k

k!
for each 0 ≤ k ≤ (n− 1), and the function Γ defined by

Γ(s) := Γn(s) for all s ∈ C such that Re(s) > −n, s ̸= −k

for each n ∈ N, 0 ≤ k ≤ n− 1 is meromorphic on C. □
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Proof of (e) Let us write

Γ(s) =

∫ 1

0

e−xxs−1 dx+

∫ ∞

1

e−xxs−1 dx

The second term on the right-hand side is analytic for all s ∈ C, and the first term becomes∫ 1

0

e−xxs−1 dx =

∫ 1

0

∞∑
n=0

(−1)n

n!
xn+s−1 dx =

∞∑
n=0

(−1)n

n!

∫ 1

0

xn+s−1 dx

where we have interchanged the order of summation and integration using absolute convergence.
We thus get the final expression

Γ(s) =
∞∑
n=0

(−1)n

n!(n+ s)
+

∫ ∞

1

e−xxs−1 dx is meromorphic on C □

Proof of (f)− (h) Consider lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1 dx for Re(s) > 0.

Since

lim
n→∞

(
1− x

n

)n
xs−1 = e−x xs−1, and

(
1− x

n

)n
≤ e−x ∀n ∈ N, ∀x ∈ [0, n],

hence, by the dominated convergence theorem,

Γ(s) =

∫ ∞

0

e−x xs−1 dx = lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1 dx

Now, for Re(s) > 0, we

Claim :

∫ n

0

(
1− x

n

)n
xs−1 dx =

n!ns

s(s+ 1) · · · (s+ n)
∀n ∈ N

Proof of Claim Since ∫ 1

0

(1− x) xs−1 dx =
1

s(s+ 1)
,

the Claim holds for n = 1. Assume it holds for n− 1. Then∫ n

0

(
1− x

n

)n
xs−1 dx

t=x/n
= ns

∫ 1

0

(1− t)n ts−1 dt =
ns

s

{
[(1− t)nts]10 + n

∫ 1

0

(1− t)n−1 ts dt

}
=
ns+1

s

∫ 1

0

(1− t)n−1 ts dt = ns · n
s

∫ 1

0

(1− t)n−1 t(s+1)−1 dt

= ns · n(n− 1)

s(s+ 1)

∫ 1

0

(1− t)n−2 t(s+2)−1 dt = · · · = n!ns

s(s+ 1) · · · (s+ n)

where we have used the induction hypothesis for the last step. Hence, for Re(s) > 0,

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
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We want to extend this result to C, excluding the poles of Γ. Let us consider the function 1/Γ.

For Re(s) > 0,

1

Γ(s)
= lim

n→∞

s(s+ 1) · · · (s+ n)

n!ns
= s lim

n→∞
e−s log n (1 + s)

(
1 +

s

2

)
· · ·
(
1 +

s

n

)
= s lim

n→∞
es(

∑n
k=1 1/k−log n)

n∏
k=1

(
1 +

s

k

)
e−s/k = seγs

∞∏
n=1

(
1 +

s

n

)
e−s/n

From the Weierstrass factorization theorem, we know that this represents an entire function with
zeros at the nonpositive integers, which proves (f)− (h). □

Proof of (k) For all s ∈ C except for the poles of Γ, one can write

1

Γ(s)Γ(1− s)
= − 1

sΓ(s)Γ(−s)
= −1

s
seγs

∞∏
n=1

(
1 +

s

n

)
e−

s
n (−s)e−γs

∞∏
n=1

(
1− s

n

)
e
s
n

= s

∞∏
n=1

(
1− s2

n2

)
=

sin πs

π
□

Example (Volume of an n-dimensional Ball) Consider the function of n real variables

f(x1, x2, . . . , xn) = exp

(
−

n∑
k=1

x2k/2

)
We can evaluate ∫

Rn

f dx =
n∏

k=1

(∫ ∞

−∞
e−x2

k/2 dxk

)
= (

√
2π)n (14)

Now, since f is rotationally symmetric, one can use generalized spherical coordinates to rewrite
the integral as follows:∫

Rn

f dx =

∫ ∞

0

e−r2/2

∫
Sn−1(r)

dAdr =

∫ ∞

0

e−r2/2An−1(r) dr

where Sn−1(r) is the (n−1)-sphere of radius r, dA is the area element, and An−1(r) is the surface
area of the sphere Sn−1(r).

Now, An−1(r) = rn−1An−1(1), so∫
Rn

f dx = An−1(1)

∫ ∞

0

rn−1e−r2/2 dr
t=r2/2
= 2(n−2)/2An−1(1)

∫ ∞

0

t(n/2)−1e−t dt

= 2(n−2)/2An−1(1)Γ (n/2) (15)

Comparing Eq.(14) and (15), we obtain the equality:

An−1(r) =
2πn/2

Γ (n/2)
rn−1

Hence, Vn(r), the volume of the n-ball of radius r is given by

Vn(r) =

∫ r

0

An−1(t) dt =
2πn/2

Γ (n/2)

∫ r

0

tn−1 dt =
2πn/2

nΓ (n/2)
rn =

2πn/2

Γ ((n/2) + 1)
rn □ (16)
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§ 4 The Riemann Zeta Function

Just like the gamma function, the Riemann zeta function plays a key role in many fields of
mathematics. It is however much less well understood and characterized than the zeta function.
There remains several open problems associated with it, including the Riemann hypothesis.

Theorem (The Riemann Zeta Function) There exists a unique function ζ on C such that

(a) ζ is meromorphic on C
(b) For Re(s) > 1,

ζ(s) =
∞∑
n=1

1

ns

(c) For Re(s) > 1,

ζ(s) =
∏

p prime

1

1− p−s
(called the Euler product formula)

where, as indicated, the product ranges over the prime numbers.

(d) ζ has no zeros in the region Re(s) > 1

(e) ζ has no zeros on the line Re(s) = 1

(f) The zeros of ζ in the region Re(s) ≤ 0 are at s = −2k, k ∈ N
(g) ζ has a unique pole, at s = 1, with residue 1.

(h) The values of ζ at even positive integers are given by Euler’s formula:

ζ(2n) =
(−1)n−1(2π)2n

2(2n)!
B2n , n ∈ N

where the Bk are the Bernoulli numbers, defined by the following Taylor expansion:

z

ez − 1
=

∞∑
m=0

Bm

m!
zm

(i) ζ takes the following values for negative integers:

ζ(−n) = −Bn+1

n+ 1
, n ∈ N

(j) ζ verifies the functional equation

Λ(1− s) = Λ(s)

where Λ is the symmetrized zeta function defined by

Λ(s) = π−s/2Γ (s/2) ζ(s)

(k) ∀ s ∈ C \ {0, 1}

π−s/2Γ (s/2) ζ(s) = − 1

1− s
− 1

s
+

1

2

∫ ∞

1

(
t−(s+1)/2 + t(s−2)/2

)
(θ(t)− 1) dt

where the function θ is one of the Jacobi theta series, defined as

θ(t) =
∞∑

n=−∞

e−πn2t = 1 + 2
∞∑
n=1

e−πn2t
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(l) ∀ s ∈ C \ {1},

ζ(s) =
Γ(1− s)

2πi

∫
C

(−z)s

ez − 1

dz

z

where C is the keyhole contour shown in the following figure, with ε arbitrary as long as
the circle does not enclose an integer multiple of 2πi. The branch of the logarithm in the
integrand is to be chosen such that −π < Arg(−z) < π.

(m) Connection to prime number enumeration

Define ψ(x) =
∑
pk≤x

ln p, with p prime numbers.

ψ is called the Von Mangoldt weighted prime counting function. Then, for any noninteger
x > 1,

ψ(x) = x−
∑
ρ

xρ

ρ
− ln 2π

where the sum is over the zeros ρ of the Riemann zeta function.

The formula (in (m)) above has important consequences for prime number enumeration, provided
one can locate the zeros ρ of ζ in the complex plane. For example, the fact that ζ has no zeros
such that Re(s) ≥ 1 leads, after some work, to the prime number theorem given below.

Theorem (Prime Number Theorem) Let π(x) denote the number of prime numbers less
than or equal to x. We have

lim
x→∞

π(x)

(x/ log x)
= 1

Of course, the exact location of the nontrivial zeros of the Riemann zeta function remains a key
open problem. It is usually described as the Riemann hypothesis, which conjectures that all the
nontrivial zeros of ζ are on the line Re(s) = 1/2, called the critical line.

Proof of (b) Recall that the Zeta Function ζ(s) is defined by the Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · · , Re(s) > 1. lim

ε→0+
ζ(1 + ε) =

∞∑
n=1

1

n
= ∞

Page 27



Complex Analysis II Chapter 5 Lecture Notes(Continued)

Since |ns| = |nRe s|, the series
∞∑
n=1

1/ns converges absolutely for Re(s) > 1, uniformly on any

half-plane Re(s) > δ with δ > 1. Hence ζ is analytic on Re(s) > 1, and has a singularity at s = 1

since lim
ε→0+

ζ(1 + ε) =
∞∑
n=1

1/n = ∞. □

Proof of (c) Likewise ∏
p prime

1

1− p−s

converges absolutely iff
∑

p prime

|p−s| =
∑

p prime

p−Re(s) converges, which happens for Re(s) > 1.

Hence

F (s) :=
∏

p prime

1

1− p−s

is analytic and nonzero in Re(s) > 1. It remains to show that ζ(s) = F (s) on this set.

For Re(s) > 1, let

ζN(s) :=
∏

p≤N, prime

1

1− p−s

|p−s|=p−Re(s)<1
=

∏
p≤N

∞∑
k=0

p−ks =
∑

n=p
c1
1 ···pcmm

1

ns
pi ≤ N, prime, 1 ≤ i ≤ m

where the last equality was obtained by reorganizing terms in the absolutely convergent series.
Hence, by the fundamental theorem of arithmetic,

lim
N→∞

|ζ(s)− ζN(s)| ≤ lim
N→∞

∑
n>N

1

ns
= 0

which proves that for Re(s) > 1,

ζ(s) =
∏

p prime

1

1− p−s
(called the Euler product formula) □

Proof of (d) follows immediately from the Euler product formula. □

Alternative Proof of (c), (d) Since

ζ(s) =
∞∑
n=1

1

ns
, and

1

2s
ζ(s) =

∞∑
n=1

1

(2n)s
for Re(s) > 1

=⇒
(
1− 1

2s

)
ζ(s) =

∞∑
n=1

1

(2n− 1)s
, and

1

3s

(
1− 1

2s

)
ζ(s) =

∞∑
n=1

1

(6n− 3)s

=⇒
(
1− 1

2s

)(
1− 1

3s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · ·

and because of the unique prime factorization of the integers, we can continue indefinitely to
obtain (in the limit)∏

p prime

(
1− 1

ps

)
ζ(s) = 1 =⇒ ζ(s) = 1/

∏
p prime

(
1− 1

ps

)
=

∏
p prime

1

1− p−s
, Re(s) > 1
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Note that

Γ(s)

ns
=

1

ns

∫ ∞

0

e−u us−1 du
u=nt
=

∫ ∞

0

e−nt ts−1 dt for each n ∈ N

=⇒ Γ(s)
∞∑
n=1

1

ns
=

∫ ∞

0

ts−1

(
∞∑
n=1

e−nt

)
dt =

∫ ∞

0

ts−1

et − 1
dt

=⇒ ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt =

1

Γ(s)

[∫ 1

0

ts−1

et − 1
dt+

∫ ∞

1

ts−1

et − 1
dt

]
Recall that 1/Γ(s) (with the appropriate limiting value of zero at the poles of Γ(s)) is entire, as

is

∫ ∞

1

(
ts−1/(et − 1)

)
dt. Furthermore, the Laurent Expansion for 1/(et − 1) around t = 0,

1

et − 1
=

1

t
+ A0 + A1 t+ A2 t

2 + · · · ,

converges absolutely for t = 1 so that∫ 1

0

ts−1

et − 1
dt =

∫ 1

0

(
ts−2 + A0 t

s−1 + A1 t
s + · · ·

)
dt =

1

s− 1
+
A0

s
+

A1

s+ 1
+ · · ·

provides an analytic extension of

∫ 1

0

(
ts−1/(et − 1)

)
dt except for isolated poles. Thus

ζ(s) =
1

Γ(s)

[(
1

s− 1
+
A0

s
+

A1

s+ 1
+ · · ·

)
+ g(s)

]
where g(s) is entire. Note that while he bracketed expression above has a simple pole at s = 1 as
well as at every non-positive integer, all these poles are cancelled by the zeros of 1/Γ(s) except
s = 1. Hence ζ has a single (simple) pole at s = 1 with residue 1. □

Proof of (k) For t > 0, x ∈ R, let F (x) :=
∑
n∈Z

exp
(
−πt(n+ x)2

)
. Since {e2πikx | k ∈ Z}

forms an orthonormal basis for L2([0, 1]), and F (x+ 1) = F (x) for all x ∈ R, so F is a periodic

function of period 1, and F (x) =
∑
k∈Z

f̂n(k) e
2πikx, where fn(x) = exp (−πt(n+ x)2), and f̂n(k) is

the Fourier coefficient defined by

f̂n(k) :=

∫ ∞

−∞
fn(x)e

−2πikx dx =
1√
t
exp

(
−πk2/t

)
for each k ∈ Z

Since
∑
n∈Z

e−πt(n+0)2 = F (0) =
∑
k∈Z

f̂n(k) e
2πik·0, the theta function θ(t) =

∞∑
n=−∞

e−πn2t satisfies

θ(t) =
∞∑

n=−∞

e−πn2t = F (0) =
∑
k∈Z

f̂n(k) =
∞∑

k=−∞

1√
t
e−

πk2

t =
1√
t
θ (1/t)

We observe that for t > 0,

θ(t)− 1 = 2
∞∑
n=1

e−πn2t ≤ 2
∞∑
n=1

e−πnt = 2
e−πt

1− e−πt
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Thus, θ(t) = 1 +O(e−πt) for t→ ∞. So using the equality θ(t) =
1√
t
θ (1/t) , we conclude that

θ(t) =
1√
t

(
1 +O(e−π/t)

)
as t→ 0+ =⇒ θ(t) = O

(
1/
√
t
)

as t→ 0+

We now turn to the Mellin transform representation for ζ(s) Re(s) > 1 by writing

Γ (s/2) =

∫ ∞

0

e−x x
s
2
−1 dx setting x = πn2t

⇐⇒ π−s/2 Γ (s/2)n−s =

∫ ∞

0

e−πn2t t
s
2
−1 dt summing over n ∈ N

=⇒ π−s/2 Γ (s/2) ζ(s) =
∞∑
n=1

π−s/2 Γ (s/2)n−s = Λ(s) =
∞∑
n=1

∫ ∞

0

e−πn2t t
s
2
−1 dt

where

Λ(s) =
∞∑
n=1

∫ ∞

0

e−πn2t t
s
2
−1 dt =

∫ ∞

0

(
∞∑
n=1

e−πn2t

)
t
s
2
−1dt =

∫ ∞

0

θ(t)− 1

2
t
s
2
−1 dt

by using the estimates for θ to exchange the sum and integral signs. Now, let

g(t) :=
θ(t)− 1

2

Since g satisfies the equality

g(t) =
θ(t)− 1

2
=

1√
t

θ(1/t)− 1

2
+

1

2
√
t
− 1

2
=

1√
t
g (1/t) +

1

2
√
t
− 1

2

we have

Λ(s) =

∫ 1

0

g(t) t
s
2
−1 dt+

∫ ∞

1

g(t) t
s
2
−1 dt =

∫ 1

0

(
1√
t
g (1/t) +

1

2
√
t
− 1

2

)
t
s
2
−1 dt+

∫ ∞

1

g(t) t
s
2
−1 dt

u=1/t
= −1

s
− 1

1− s
+

∫ ∞

1

g(u)u−
s
2
−1
2 du+

∫ ∞

1

g(t) t
s
2
−1 dt

= −1

s
− 1

1− s
+

1

2

∫ ∞

1

(θ(t)− 1) (t−
s
2
−1
2 + t

s
2
−1) dt □

Proof of (a) The integral defines an entire function on C, showing that ζ can indeed be continued
to a meromorphic function on C. □

Proof of (j) The Mellin transform representation immediately yields Λ(1− s) = Λ(s), which is
property (j), and which can be rewritten as

Λ(s) = 2sπs−1 sin (πs/2) Γ (1− s) ζ(1− s) (17)

Proof of (g) Λ has simple poles at s = 0 and at s = 1, with residues −1 and 1. Therefore,

ζ(s) =
ss/2

Γ (s/2)
Λ(s) has a pole at s = 1 with residue

√
π/Γ (1/2) = 1 and a pole at s = 0 with

residue 1/Γ(0) = 0 We see that the singularity at 0 is in fact a removable singularity. □
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Proof of (f) By the Eq.(17), it is clear that the zeros of ζ for Re(s) < 0 are precisely s = −2k,
k ∈ N. □

Alternative Proof of (e) Let σ > 1 and t ∈ R∗ and consider the quantity

µ= ln |ζ(σ)3 ζ(σ + it)4 ζ(σ + 2it)| = 3 ln |ζ(σ)|+ 4 ln |ζ(σ + it)|+ ln |ζ(σ + 2it)|

= 3 ln

∣∣∣∣∣ ∏
p prime

1

1− p−σ

∣∣∣∣∣+ 4 ln

∣∣∣∣∣ ∏
p prime

1

1− p−σ−it

∣∣∣∣∣+ ln

∣∣∣∣∣ ∏
p prime

1

1− p−σ−2it

∣∣∣∣∣
=
∑

p prime

(
−3 ln |1− p−σ| − 4 ln |1− p−σ−it| − ln |1− p−σ−2it|

)
=
∑

p prime

[
−3Re

(
Ln (1− p−σ)

)
− 4Re

(
Ln (1− p−σ−it)

)
− Re

(
Ln (1− p−σ−2it)

)]
where, as always, Ln is the principal branch of the logarithm. Our next step will be to use power
series for Ln, which we can since

|p−σ| < 1 , |p−σ−it| < 1 , |p−σ−2it| < 1

For s = a + ib such that a = Re(s) > 1,

−Ln (1− p−s) =
∞∑
k=1

p−ks

k
=⇒ −Re

(
Ln (1− p−s)

)
=

∞∑
k=1

p−ks

k
cos(kb ln p)

Therefore,

µ =
∑

p prime

∞∑
k=1

p−ks

k
[3 + 4 cos(kt ln p) + cos(2kt ln p)] = 2

∑
p prime

∞∑
k=1

p−ks

k
[1 + cos(kt ln p)]2 ≥ 0

We can therefore say that eµ ≥ 1, which means that

|ζ(σ)3 ζ(σ + it)4 ζ(σ + 2it)| = eµ ≥ 1 (18)

All we now have to show is that this inequality prevents ζ from having a zero on the line
Re(s) = 1. Let us assume the contrary: ∃ t ∈ R∗ such that ζ(1 + it) = 0. We then look at the
asymptotic behavior of each term in (18) as σ → 1+ :

ζ(σ) ∼ 1

σ − 1
; ζ(σ + it) ∼ K1(σ − 1) ; ζ(σ + 2it) ∼ K2 as σ → 1+ , K1, K2 ∈ C

where the first asymptotic estimate is tight, and the other two are conservative, in the sense that
ζ(σ+ it) could go to zero faster, and ζ(σ+2it) could also go to zero as σ → 1+. We then obtain
the following conservative asymptotic estimate as σ → 1+ :

|ζ(σ)3 ζ(σ + it)4 ζ(σ + 2it)| ∼ K3(σ − 1) as σ → 1+ , K3 ∈ C

This contradicts the result |ζ(σ)3ζ(σ + it)4ζ(σ + 2it)| ≥ 1 for all σ > 1 and t ∈ R∗. ζ does not
have any zero with real part equal to 1. □

Alternative Proof of (e) Since ζ(s) is real-valued for real s, according to the Schwarz Reflection
Principle, ζ(s) = ζ(s) for all s ∈ C.
Thus, if ζ(1 + ia) = 0 for some a ∈ R, then ζ(1 − ia) = 0, the functions f(s) = ζ(s) ζ(s + ia),
f(s − ia) = ζ(s − ia) ζ(s) and g(s) = f(s) f(s − ia) = ζ2(s) ζ(s + ia) ζ(s − ia) are entire since
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the pole of ζ(s) is cancelled by the zero ζ(s+ ia) at s = 1, and the pole of ζ(s+ ia) is cancelled
by the zero of ζ(s) at s = 1− ia.

The desired contradiction will be based, in part, on the fact that the Dirichlet series for g(s) has
all nonnegative coefficients. To see that, we first consider log(g(s)) which, according to Euler’s
formula for ζ(s), is given by

log(g(s)) =
∑

p prime

[
−2 log

(
1− p−s

)
− log

(
1− p−s+ia

)
− log

(
1− p−s−ia

)]
=
∑
p, n

1

n pn s

(
2 + p−i n a + pi n a

)
=
∑
p, n

2 + 2 cos (n a log p)

n pn s

where the sum is taken over all primes p and all positive integers n. Since 2 + p−i n a + pi n a =
2 + 2 cos (n a log p) ≥ 0, all of the coefficients in the above Dirichlet series for log(g(s)) are

nonnegative. But if a Dirichlet series z(s) =
∑
n

ann
−s has all nonnegative coefficients, so does

ez(s) =
∏
n

∑
k

akn
nk s k !

Hence g(s) represents an entire function whose Dirichlet series has all nonnegative coefficients
which implies that its Dirichlet series must converge for all s ∈ C. But this is clearly impossible.
Since all of the coefficients of

g(s) =

(∑
n

n−s

)2 ∑
n

n−s−ia
∑
n

n−s+ia

are nonnegative, the sum is clearly positive for all real s. Moreover, the sum must be larger than
the sum over any subset of the positive integers. So if we consider nonnegative real values of s
and limit ourselves to the subseries corresponding to integers n of the form 2k, we have

|g(s)| > 1

(1− 2−s)2
· 1

1− 2−s−ia
· 1

1− 2−s+ia

Finally, since s is nonnegative, |
(
1− 2−s−ia

) (
1− 2−s+ia

)
| ≤ 4, and, by letting s → 0 through

positive real values, we have

lim
s→0

|g(s)| ≥ lim
s→0

1

4 (1− 2−s)2
= ∞

contradicts to that the Dirichlet series for g(s) converges for all s ∈ C. □.

Proof of (l) Let s ∈ C such that Re (s) > 1. Since∫ ∞

0

ts−1

et − 1
dt =

∫ ∞

0

ts−1

∞∑
n=1

e−nt dt =
∞∑
n=1

∫ ∞

0

ts−1e−nt dt
u=nt
=

∞∑
n=1

1

ns

∫ ∞

0

us−1e−u du = ζ(s)Γ(s)

where we have used absolute convergence to interchange the order of integration and summation,
and note that if the curve C does not pass through or enclose a pole of the integrand, then, by
Cauchy’s Theorem, the value of the integral∫

C

(−z)s

ez − 1

dz

z
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is a multiple of 2πi which does not depend on the shape of the curve C. We are therefore free to
choose the key hole contour shown in the figure, and to take the limit ε→ 0 for that contour. It
is then straightforward to verify that the contribution from the circle of radius ε tends to zero.
When ε → 0, the only contributions to the integral thus come from the two extended branches
of the contour C and we have∫

C

(−z)s

ez − 1

dz

z

=

∫ 0

∞

ρs−1e−isπ

eρ − 1
dρ+

∫ ∞

0

ρs−1eisπ

eρ − 1
dρ

=(eisπ − e−isπ)

∫ ∞

0

ρs−1

eρ − 1
dρ = 2i sin(sπ) ζ(s)Γ(s)

It is a simple exercise to verify that the integral over the small circle tends to zero as ε tends to
0 when Re (s) > 1. Hence, for Re (s) > 1,∫

C

(−z)s

ez − 1

dz

z
= 2i sin(sπ) ζ(s)Γ(s)

⇐⇒ ζ(s) =
1

2i sin(sπ) Γ(s)

∫
C

(−z)s

ez − 1

dz

z
=

Γ(1− s)

2πi

∫
C

(−z)s

ez − 1

dz

z
(19)

We observe that the integral in (19) is an entire function of s, so (19) can be viewed as a way to
analytically extend ζ to a meromorphic function in C which is equivalent to the Mellin transform
representation. Note that when Re (s) ≤ 1, it is not true anymore that the contribution from
the circle of radius ε tends to 0 as ε→ 0. □

Proof of (i) Property (i) follows from (19). This is left as a straightforward exercise, as well as
property (h) which follows from property (i) and the functional equation. □
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